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Background

Reduced costs of single cell RNA sequencing (scRNA-seq) has enabled
generation of 10-100 patient datasets

Larger population-scale datasets necessary for a biologically-relevant impact
on biomarker and drug discovery

Often these datasets are compiled from multiple experiments with variations
in the platform used, technicians, experimental conditions, among others
These differences result in batch effects that must be corrected and/or
understood quantitatively for meaningful analysis

Numerous batch correction algorithms have been developed

Here, we compare two popular algorithms - Scanorama & Harmony -
profiling for memory usage, computational complexity, & batch correction
efficacy

We used k-Nearest Neighbor Batch Effect Test (kBET) and Average Silhouette
Width (ASW) to measure efficacy of batch correction

Data from a Neuroblastoma Cell Atlas ( ) used
in this study

Batch correction also applied across neuroblastoma samples collected from
different sequencing platforms - CEL-seg2 & Chromium 10x

Batch correction applied across cells collected from multiple fetal adrenal
gland samples (normal tissue) and multiple neuroblastoma samples (tumor
tissue)

Results

Neuroblastoma Cell Atlas Use Case

# of Cells # of Samples Seq Platform

Normal Adrenal Gland 57,972

{ samples from 5 fetuses
Neuroblastoma 0,442
Neuroblastoma 13,281

6 samples from 5 patients 10x
16 patient samples CEL-seqg2

Batch Correction Performance Assessment

KBET (k-Nearest Neighbor Batch Effect Test) package in R assessed batch

effects by comparing local & global batch label distributions using a fixed k-
NN matrix (DOI: 10.1038/s41592-018-0254-1)

ASW (Avg. Silhouette Width) package in Python (scikit-learn) measured batch
mixing performance across sequencing platforms (10x & CEL-seq?2)
(ASW,atr0rm), S@Mples from different individuals in a dataset (ASWq,ppie), &
preservation of cell type purity (ASW,,;)

Measuring Efficacy of Batch Correction Across Seq. Platforms & Samples

Figure 2: KBET
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Results

Memory & Compute Time Profiling of Batch Correction Algorithms

# of data # of

S?:;azze;) # of cells | Density common
integrated genes

10 7.6 100K 10% 32,738 1000
10 16 200K 10% 32,738 1000
10 39 500K 10% 32,738 1000
10 176 1 Million 10% 32,738 1000
10 300 2 Million 10% 32,738 1000

Figure 6: Table shows the design of experiment (DOE) space using synthetic
data generated by sampling Human Cell Atlas datasets
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Analysis performed in a scalable pipeline using REVEAL, a bioinformatics

platform developed by Paradigm4
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Study also presents a scalable and easily deployable workflow for assessing e . i S 2w e w1 a4 s
. ) SCanorama Harmony Number of Cells (Million)

single-cell algorithms _ -

shows batch — | Scanorama run failed on 2M
effect for both cells during merging of
algorithms panoramas on the test EC2
Instance

Rejection Rate
Rejection Rate ~

o

==| inear (Harmony) ==Poly. (Scanorama)

Figure 8: Plot shows
relationship between memory
usage during batch correction
and number of cells using
Scanorama & Harmony
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Conclusions

Sensitive KBET analysis suggests batch bias exists after batch correction
across platforms & samples in a dataset (not shown) using both algorithms
ASW values show both algorithms preserve cell type information after batch
correction across seq. platforms with Scanorama having a better score

Using a truncated SVD instead of the fbpca PCA improves Harmony’s
performance at maintaining cell type information, but reduces the batch
mixing efficacy when correcting across seq. platforms

Results across samples within a normal or neuroblastoma dataset suggest
Harmony doing better at maintaining cell type information, & slightly better
performance at batch mixing

Cost-Effective Elastic Compute

e \© compute using Harmony-trSVD Harmony-fopca.pca  Scanorama

® No cluster setup needed; machines
turned off automatically

e Vertical scaling starts up one large

R i e Figure 4: Plot show impact of dim. red. method & algorithm used in removing
across 100's of machines .
batch effects between neuroblastoma cells from different seq. platforms

e Pass data, algorithm & parameters to
- 1-ASWamole Memory & computation time profiling results show Harmony significantly
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Figure 1: Using REVEAL to run scalable single cell analysis workflows

Batch Correction Algorithms

Scanorama (DOI: 10.1038/s41587-019-0113-3) enables batch correction &
integration of heterogenous scRNA-seq datasets

Harmony (DOI: 10.1038/s41592-019-0619-0) allows fast, sensitive, &
accurate integration of single cell data

Python-based implementation of Scanorama used

Sparse version of Harmony utilized in R

Dimensionality reduction for Harmony performed using fbpca (PCA) & scikit-
learn (truncated SVD) instead of default Seurat PCA for better scalability
mb5.16xlarge AWS EC2 instance type used for all analyses

Uncorrected
data

Figure 5: Table shows ASW values for batch effect removal performance
between samples of a dataset and preservation of cell type purity
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